

Problem

Person re-ID models trained on one dataset often fail to generalize well to another due to dataset bias.

Motivation

 Style transfer bridges the dataset gap by transferring persons in dataset A to dataset B.

Duke images

Market images

Self-similarity and domain-dissimilarity

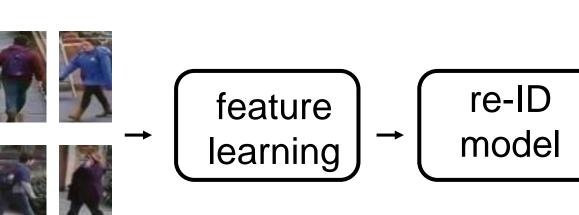
self-similarity

Self-similarity: a translated image, despite of its style changes, should contain the same underlying identity with its corresponding source image.

Domain-dissimilarity: a translated image should be different from any image in the target dataset in terms of the underlying ID.

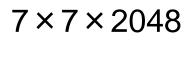
Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification Weijian Deng¹, Liang Zheng³, Qixiang Ye¹, Guoliang Kang², Yi Yang², Jianbin Jiao¹ ¹University of Chinese Academy of Sciences ²University of Technology Sydney ³Singapore University of Technology and Design Method Experiment • "Learning via translation" framework re-ID feature similarity preserving model image-to-image translation learning source domain target domain **Step 2**: feature learning **Step 1: source-target image translation** Similarity Preserving cycle-consistent Generative Adversarial Network (SPGAN) • Performance. **SPGAN** consists of two components: SiaNet (top) and CycleGAN (bottom)

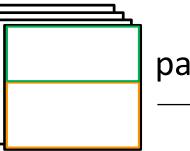
SiaNet constrains the mapping functions



target domain

source domain


Visualization



Local Max Pooing (LMP)

Conv5 feature maps

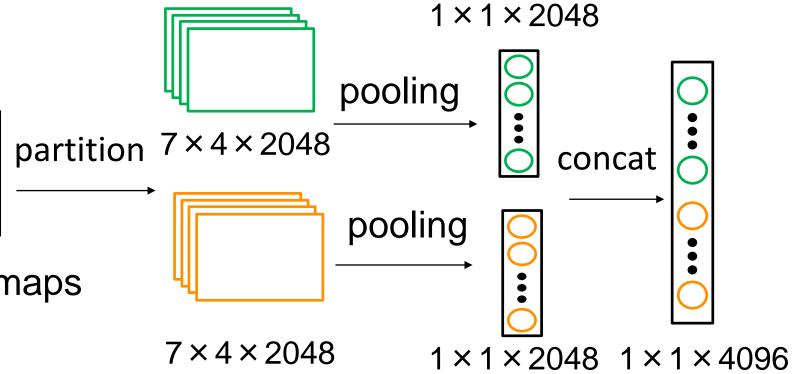
We adopt ID-discriminative Embedding (IDE) as feature learning method.

Comparison with baselines

Methods	DukeMTMC-reID					Market-1501				
wiethous	rank-1	rank-5	rank-10	rank-20	mAP	rank-1	rank-5	rank-10	rank-20	mAP
Supervised Learning	66.7	79.1	83.8	88.7	46.3	75.8	89.6	92.8	95.4	52.2
Direct Transfer	33.1	49.3	55.6	61.9	16.7	43.1	60.8	68.1	74.7	17.0
CycleGAN (basel.)	38.1	54.4	60.5	65.9	19.6	45.6	63.8	71.3	77.8	19.1
CycleGAN (basel.) + L_{ide}	38.5	54.6	60.8	66.6	19.9	48.1	66.2	72.7	80.1	20.7
SPGAN $(m = 0)$	37.7	53.1	59.5	65.6	20.0	49.2	66.9	74.0	80.0	20.5
SPGAN $(m = 1)$	39.5	55.0	61.4	67.3	21.0	48.7	65.7	73.0	79.3	21.0
SPGAN $(m = 2)$	41.1	56.6	63.0	69.6	22.3	51.5	70.1	76.8	82.4	22.8
SPGAN ($m = 2$) + LMP	46.9	62.6	68.5	74.0	26.4	58.1	76.0	82.7	87.9	26.9

Comparison with the state of the art

Methods	Market-1501				Mathada	DukeMTMC-reID				
	Setting	Rank-1	Rank-10	mAP	Methods	Rank-1	Rank-10	mAP		
Bow	SQ	35.8	60.3	14.8	Bow	17.1	34.9	8.3		
LOMO	SQ	27.2	49.1	8.0	LOMO	12.3	26.6	4.8		
UMDL	SQ	34.5	59.6	12.4	UMDL	18.5	37.6	7.3		
PUL	SQ	45.5	66.7	20.5	PUL	30.0	48.5	16.4		
CAMEL	MQ	54.5	-	26.3	SPGAN	41.1	63.0	22.3		
SPGAN	SQ	51.5	76.8	22.8		-				
SPGAN	MQ	57.0	80.3	27.1	SPGAN+LMP	46.9	68.5	26.4		
SPGAN+LMP	SQ	58.1	82.7	26.9	SQ: single-query; MQ: multiple-query.					


Reference

adversarial networks. In ICCV, 2017.

The code is available at https://github.com/Simon4Yan/Learning-via-Translation.

It works on a well-trained re-ID model and can reduce the impact of noisy signals.

1. A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR, 2011. 2. J. Zhu et.al. Unpaired imageto-image translation using cycle-consistent