Unsupervised Model Evaluation

Weijian Deng

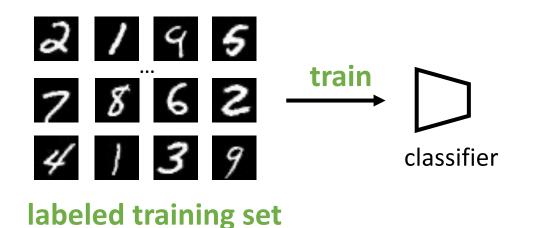
Australian National University

Australian National University

Pillars in Machine Learning

I. training

Pillars in Machine Learning: Training

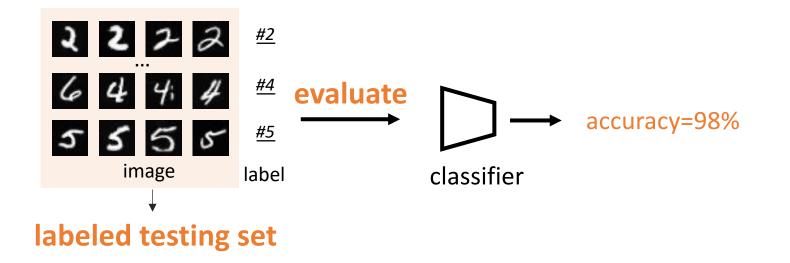


Pillars in Machine Learning: Testing

I. training

labeled training set

II. testing



Supervised Evaluation

Test set is fully annotated

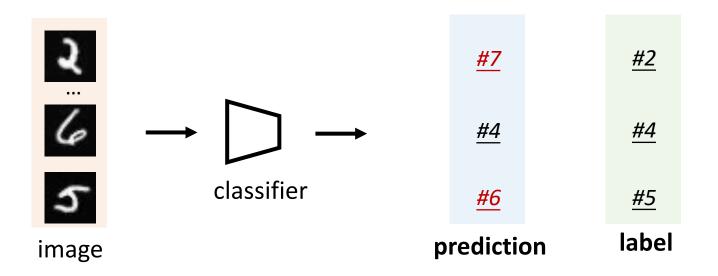
Ground truths are provided

image

Supervised Evaluation

Test set is fully annotated

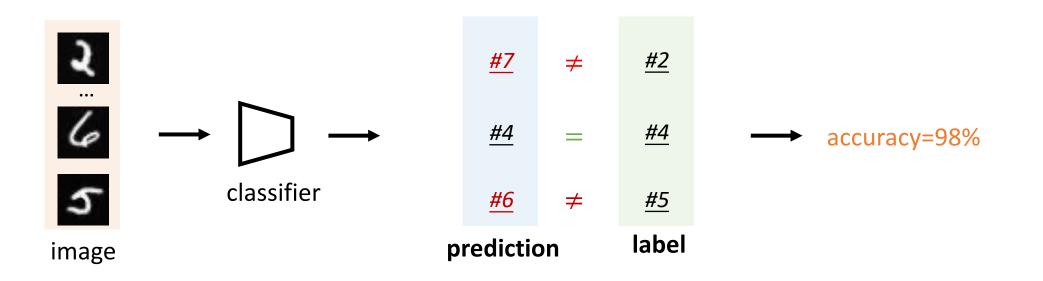
Ground truths are provided



Supervised Evaluation

Test set is fully annotated

Ground truths are provided



In-distribution Benchmarks

Cityscape

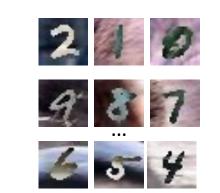
MSCOCO

Visual Object Classes Challenge 2009 (VOC2009)

PASCAL

Test set is unlabeled Only images are provided How to evaluate model <u>without labels</u>?

Unlabeled Test set 1

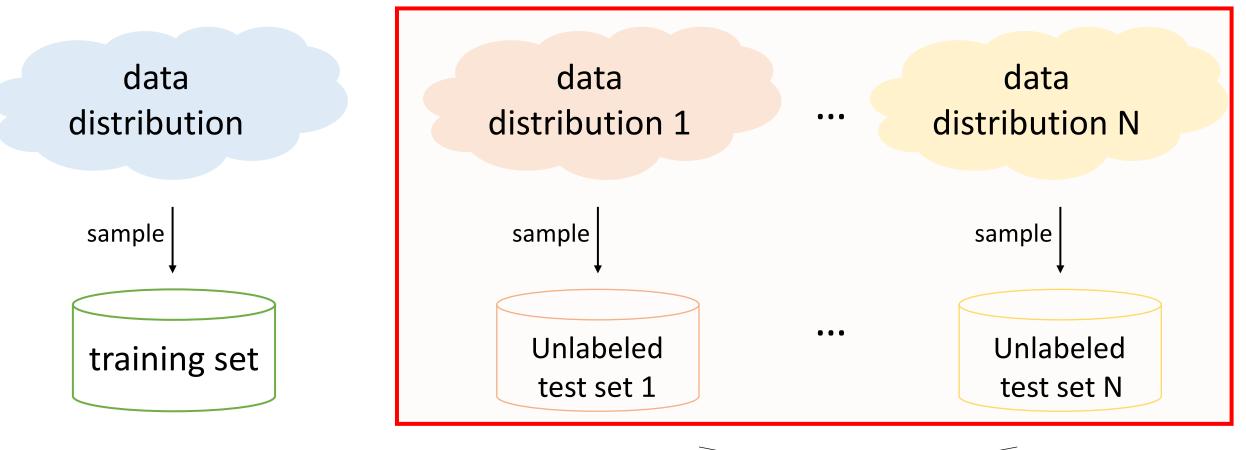


Unlabeled Test set 2

Unlabeled Test set 3

Unlabeled Test set 3

Evaluation Beyond Textbook



i.i.d. assumption

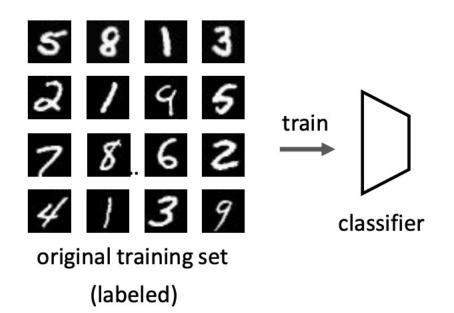
We Encounter This Problem Many Times

- Deploy face recognition model in a new airport
- Deploy a 3D object detection system to another city

• .

We can't quantitatively measure the model accuracy like we usually do!

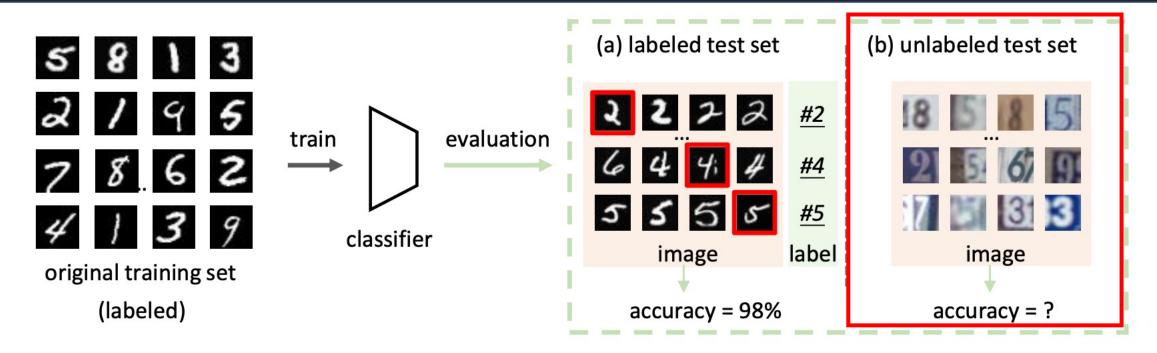
We need to **annotate** the test data When the testing environment is changed, we need to **annotate again**



Given

- A training dataset
- A classifier trained on this dataset
- A test set without labels

Deng, Weijian, and Liang Zheng. "Are Labels Necessary for Classifier Accuracy Evaluation?", In CVPR, 2021; TPAMI 2022



Given

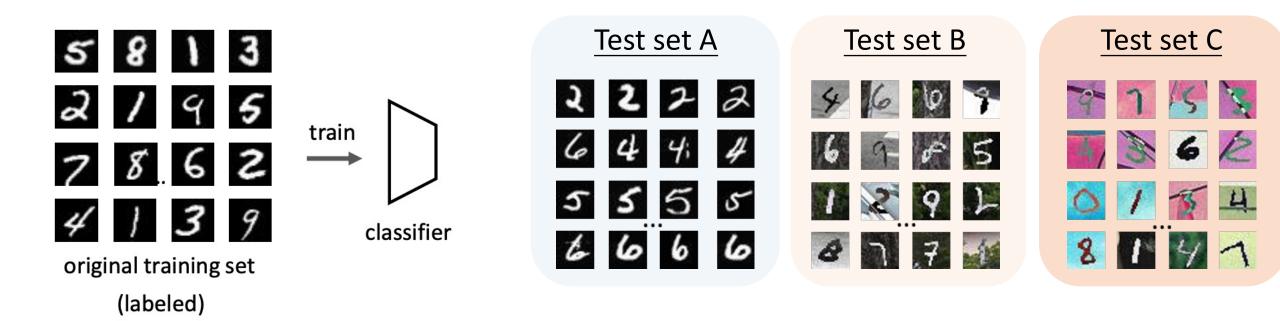
- A training dataset
- A classifier trained on this dataset
- A test set without labels

We want to *estimate*: accuracy on the unlabelled test set

Deng, Weijian, and Liang Zheng. "Are Labels Necessary for Classifier Accuracy Evaluation?", In CVPR, 2021; TPAMI 2022

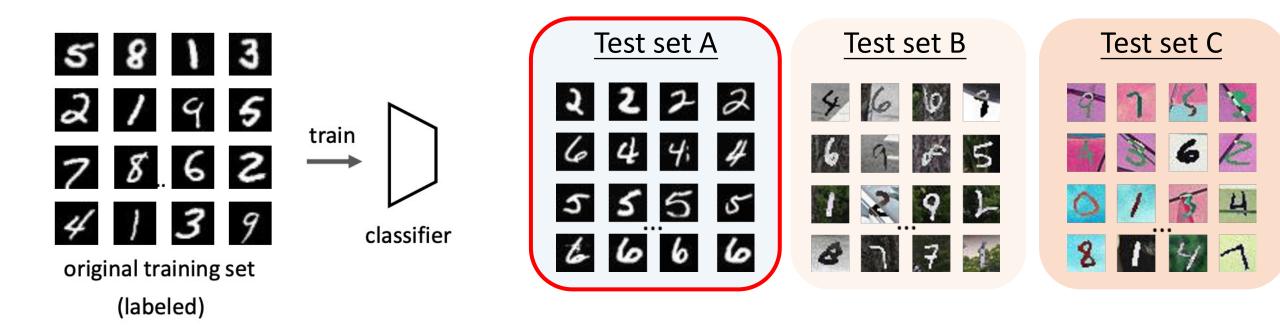
- Accuracy prediction based on dataset shift
- Self-supervision for unsupervised evaluation

Accuracy Prediction Based on Dataset Shift



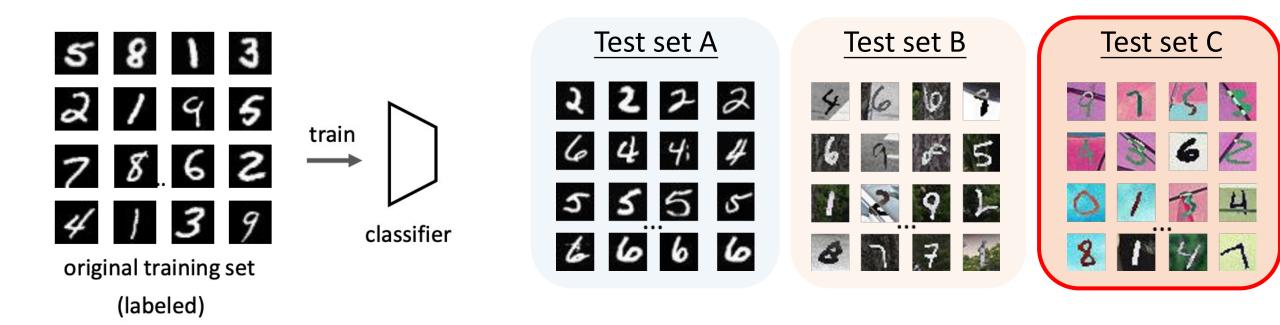
Q: Classifier performs best on ...?

Accuracy Prediction Based on Dataset Shift



Test set A is more similar to training set

Accuracy Prediction Based on Dataset Shift



Test set C looks quite different from training set

Correlation Study

1. We collect many test sets from different distributions

- 2. For each test set, we obtain

 a) its distance with training set
 (*Fréchet distance*)
 b) classification accuracy
- 3. Measure the accuracy relationship between the two statistics

Correlation Study: How Can We Have Many Datasets?

• Using image transformations

original set

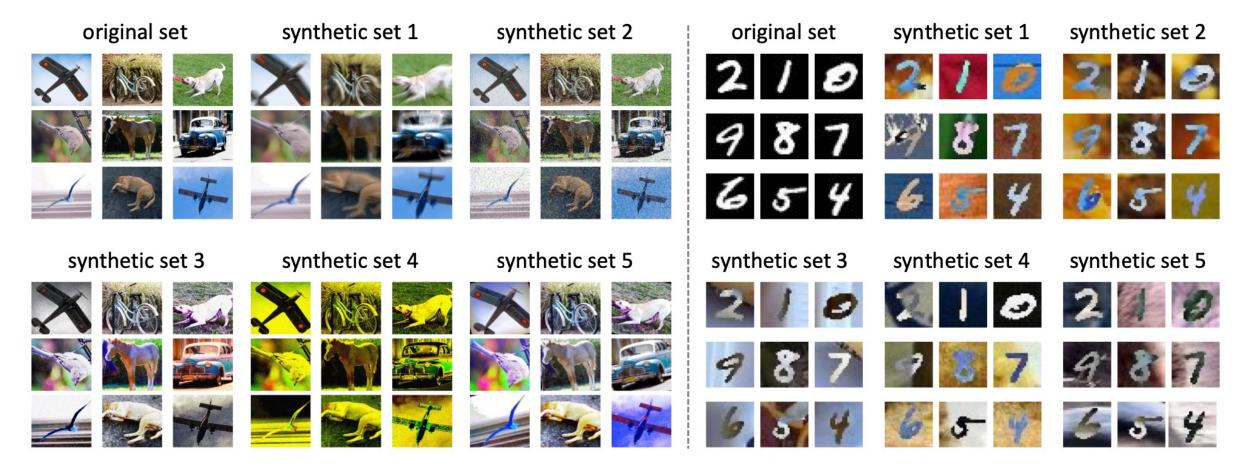
original set 2 1 Ø 9 8 7

COCO setup

MNIST setup

Correlation Study: How Can We Have Many Datasets?

• Using image transformations



COCO setup

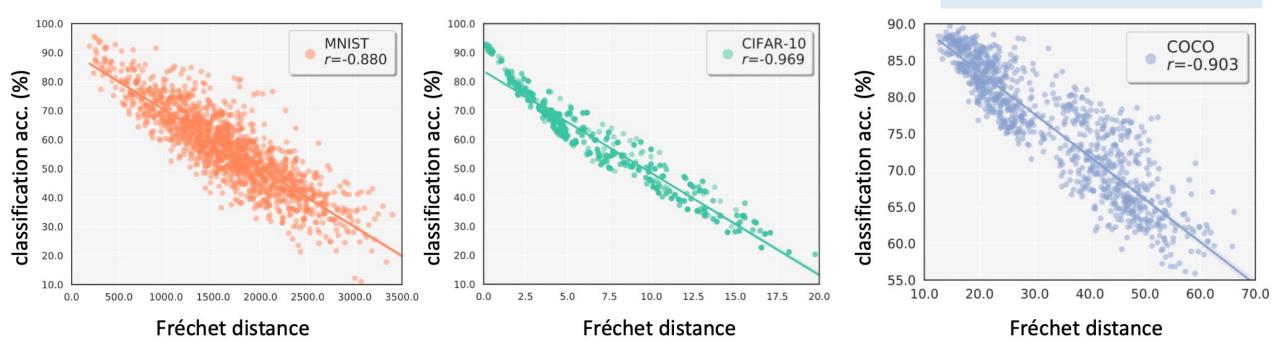
MNIST setup

Correlation Study: How To Obtain Accuracy?

Labels of the synthetic sets are inherited from the original set

Correlation Study on Three Setups

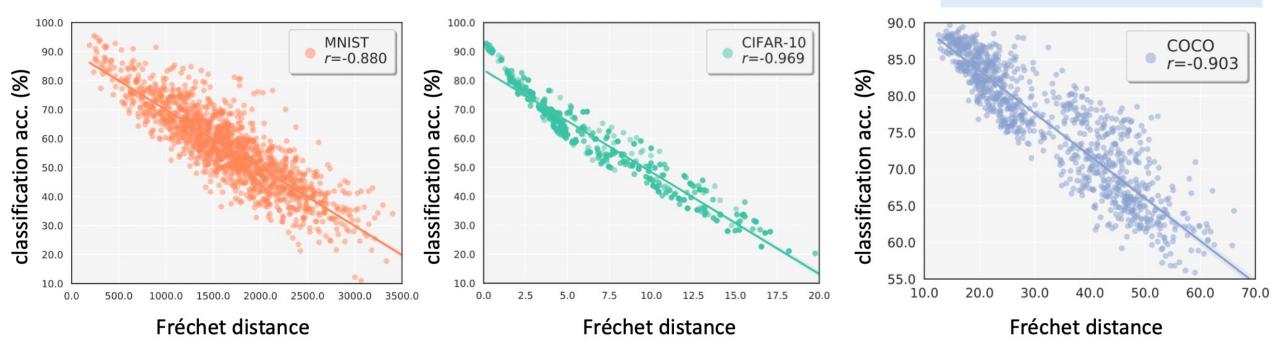
Every point is a dataset



we consistently observe a strong negative linear relationship (*Pearson Correlation r <0.88*) between the accuracy of two tasks

Correlation Study on Three Setups

Every point is a dataset



This indicates that the classifier tends to gain a **high accuracy** on the sample set which has a **low distribution shift** with training set.

- Linear regression
- Network regression

• Linear regression

Fréchet distance (FD) between the test set and the original training set

$$a_{linear} = A_{linear}(\boldsymbol{f}) = w_1 f_{linear} + w_0$$

$$\downarrow \frac{\textit{Fréchet distance}}{\int f_{linear}} = \mathrm{FD}(\mathcal{D}_{ori}, \mathcal{D}) = \|\boldsymbol{\mu}_{ori} - \boldsymbol{\mu}\|_2^2 + Tr(\boldsymbol{\Sigma}_{ori} + \boldsymbol{\Sigma} - 2(\boldsymbol{\Sigma}_{ori}\boldsymbol{\Sigma}))^{\frac{1}{2}}$$

- Linear regression
- Network regression

FD + mean + covariance (sum) for representing each dataset

We calculate σ by taking a weighted summation of each row of Σ to produce a single vector

$$= f_{neural} = [f_{linear}; \boldsymbol{\mu}; \boldsymbol{\sigma}]$$

• We use neural network regression

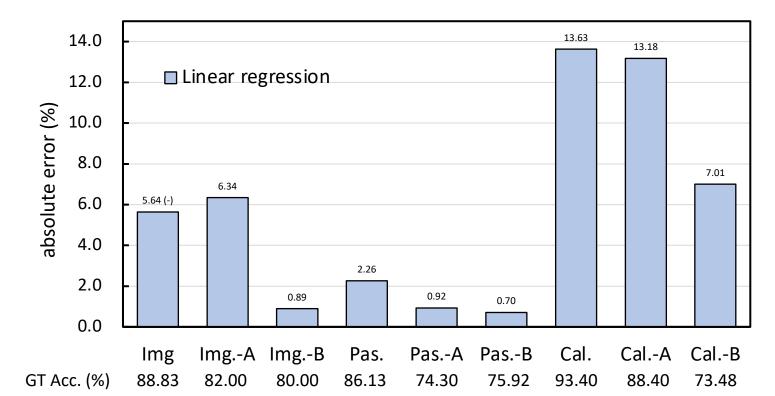
$$a_{neural} = A_{neural}(f_{neural})$$

• Linear regression achieves promising estimations

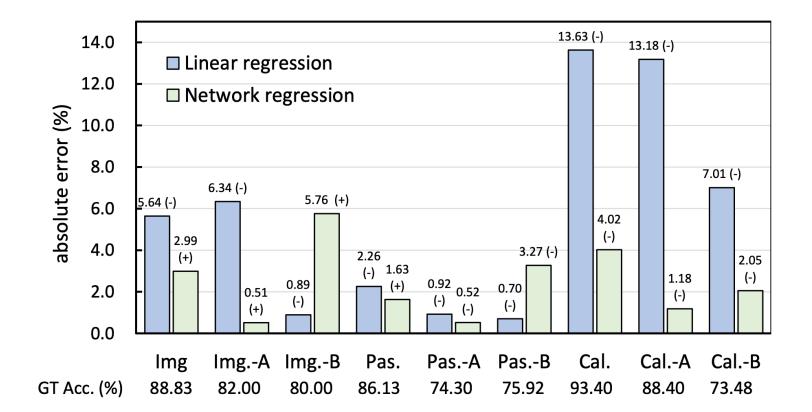
Training set	Seed set		Test sets	
COCO training set	COCO validation set		PASCAL, ImageNet, and Caltech	
Image transformations			ormations	
Many synthesized test sets				
		train		
Regression models				

• Linear regression achieves promising estimations

Training set	Seed set	Test sets
COCO training set	COCO validation set	PASCAL, ImageNet, and Caltech



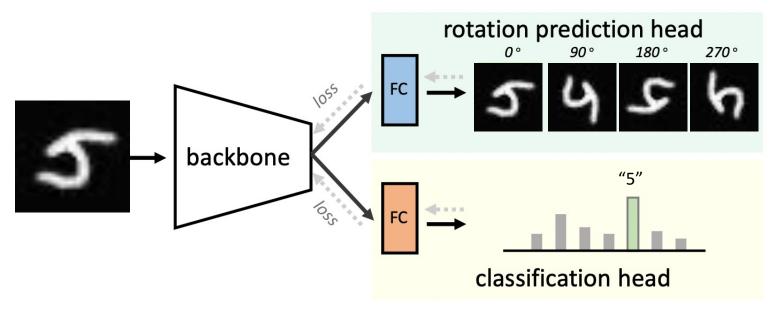
- Linear regression achieves promising estimations
- Network regression makes more accurate predictions



- Accuracy prediction based on dataset shift
- Self-supervision for unsupervised evaluation

Self-Supervision for Unsupervised Classifier Evaluation

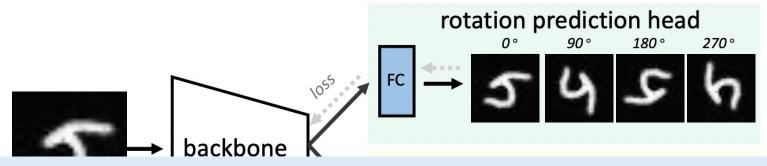
• Multi-task network structure



Deng, Weijian, Stephen Gould, and Liang Zheng. "What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?." ICML, 2021.

Self-Supervision for Unsupervised Classifier Evaluation

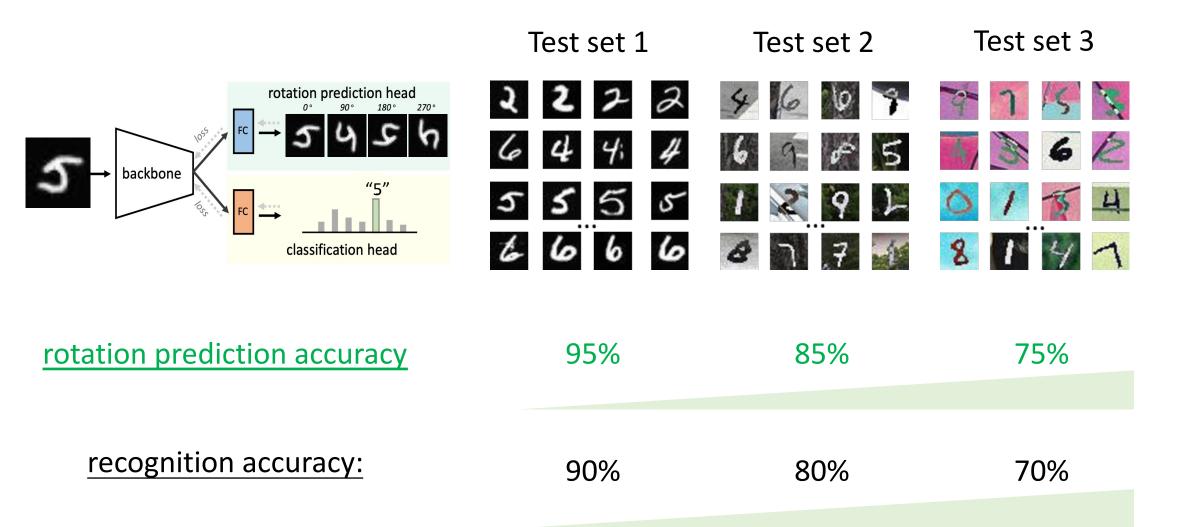
Multi-task network structure



Rotation prediction is self-supervised: we can obtain its rotation labels freely and calculate its accuracy on any test set

Deng, Weijian, Stephen Gould, and Liang Zheng. "What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments?." ICML, 2021.

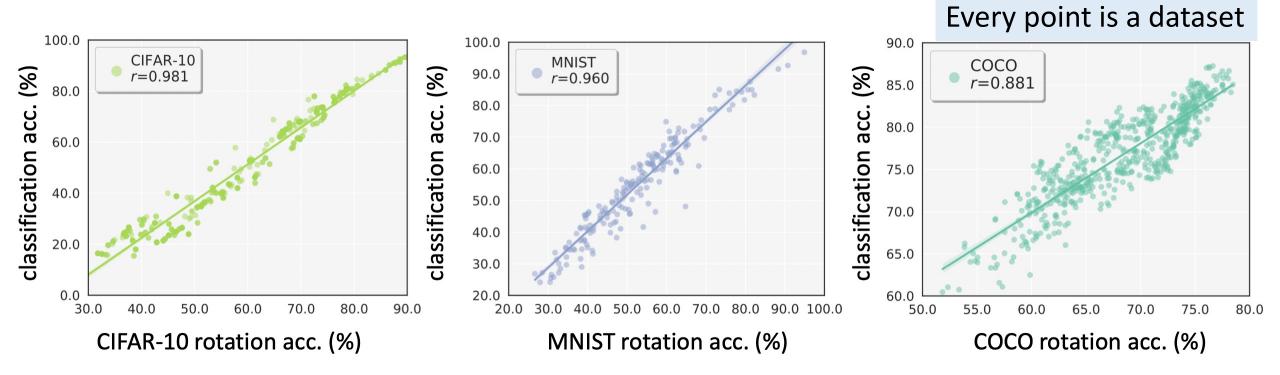
Motivation



Correlation Study

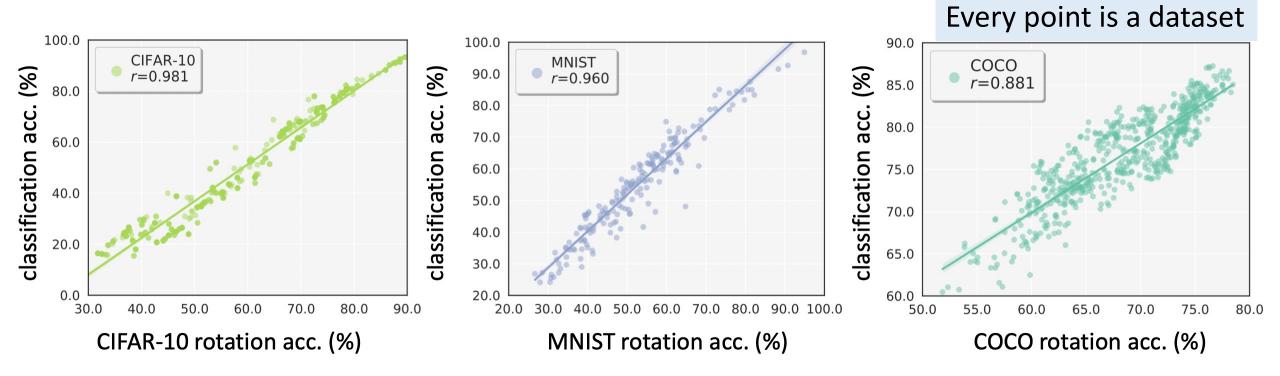
- 1. We collect many test sets from different distributions
- 2. Test our multi-task network on them and obtain
 a) sematic classification accuracy
 b) rotation prediction accuracy
- 3. Measure the accuracy relationship between two types of tasks

Correlation Study on Three Setups



we consistently observe a **strong linear relationship** (*Pearson Correlation r > 0.88*) between the accuracy of two tasks

Correlation Study on Three Setups



If the multi-task **network is good at predicting rotations**, it is most likely to **achieve good object recognition accuracy** under the same environment, and vice versa

Our Solution for Accuracy Estimation: Linear Regression

• Method:

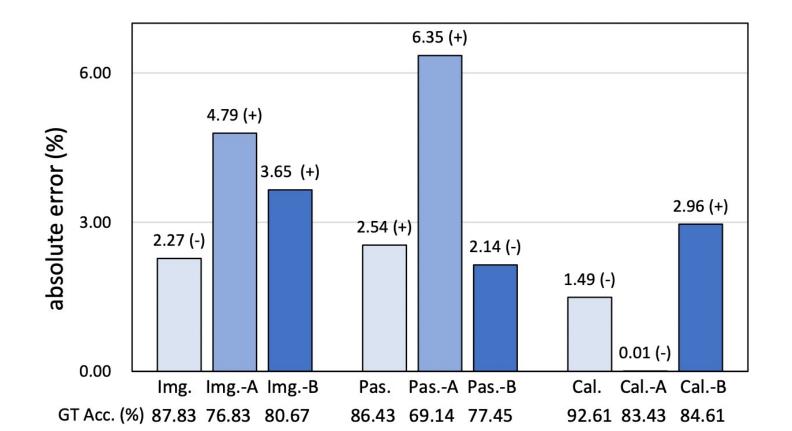
Predict classifier performance from rotation prediction accuracy

We thus can use linear regression to predict accuracy

$$a^{cls} = w_1 a^{rot} + w_0,$$

where $w_1, w_0 \in \mathbb{R}$ are linear regression parameters

• Linear regression achieves promising estimations



Conclusions and Insights

- We study a very interesting problem: Evaluating model performance *without* ground truths
- We introduce a very simple method:

Dataset-level regression (Linear regression and Neural network regression)

• Potential Applications:

Other tasks: object retrieval, detection, segmentation, etc.

Thank you!

The code is available at https://weijiandeng.xyz

